Laplace Demo 2#
keys: homogeneous Neumann bvp, double layer potential ansatz, hypersingular operator, electrostatics
from netgen.occ import *
from ngsolve import *
from ngsolve.webgui import Draw
from ngbem import *
from ngsolve import Projector, Preconditioner
from ngsolve.krylovspace import CG
Loading ngbem library
Neumann Boundary Value Problem |
Double Layer Potential |
Variational Formulation |
||
---|---|---|---|---|
\( \left\{ \begin{array}{rcl l} -\Delta u &=& 0, \quad &\Omega \\ \gamma_1 u&=& u_1, \quad &\Gamma \end{array} \right. \) |
\(\quad \Rightarrow \quad\) |
\( u(x) = \mathrm{DL}(m) \) |
\(\quad \Rightarrow \quad\) |
\(\left\langle v, \gamma_1 \left(\mathrm{DL}(m)\right) \right\rangle_{-\frac12} = \left\langle u_1, v\right\rangle_{-\frac12} \) |
\(\mathrm{D} \, \mathrm{m} = \mathrm{M} \, \mathrm{u}_1 \) |
NG-BEM Python interface |
symbol |
FE trial space |
FE test space |
---|---|---|---|
|
\(\mathrm V \) |
|
|
|
\(\mathrm K \) |
\(\gamma_0\) |
|
|
\(\mathrm D\) |
\(\gamma_0\) |
\(\gamma_0\) |
|
\(\mathrm K'\) |
|
\(\gamma_0\) |
Mesh
sp = Sphere( (0,0,0), 1)
mesh = Mesh( OCCGeometry(sp).GenerateMesh(maxh=0.3)).Curve(2)
Draw(mesh);
Trial and Test Spaces
fesH1 = H1(mesh, order=1, definedon=mesh.Boundaries(".*"))
uH1,vH1 = fesH1.TnT()
Right Hand Side \(\;\mathrm{M}\mathrm{1}_0\)
uexa = 1/ sqrt( (x-1)**2 + (y-1)**2 + (z-1)**2 )
graduexa = CF( (uexa.Diff(x), uexa.Diff(y), uexa.Diff(z)) )
n = specialcf.normal(3)
u1exa = graduexa*n
Mu1 = LinearForm(u1exa*vH1.Trace()*ds(bonus_intorder=3)).Assemble()
System Matrix \(\, \mathrm{D}\)
D=HypersingularOperator(fesH1, intorder=12, leafsize=40, eta=3., eps=1e-11, method="aca")
Stabilization Matrix \(\, \mathrm{S}\)
vH1m1 = LinearForm(vH1*1*ds(bonus_intorder=3)).Assemble()
S = (BaseMatrix(Matrix(vH1m1.vec.Reshape(1))))@(BaseMatrix(Matrix(vH1m1.vec.Reshape(fesH1.ndof))))
Solve \(\; \left(\mathrm{D} + \mathrm{S}\right) \mathrm{m} = \mathrm{M}\mathrm{u}_1\)
m = GridFunction(fesH1)
pre = BilinearForm(uH1*vH1*ds).Assemble().mat.Inverse(freedofs=fesH1.FreeDofs())
with TaskManager():
CG(mat = D.mat+S, pre=pre, rhs = Mu1.vec, sol=m.vec, tol=1e-8, maxsteps=200, initialize=False, printrates=False)
Draw (m, mesh, draw_vol=False, order=3);
Note: Details for instance in Numerische Näherungsverfahren für elliptische Randwertprobleme, p.127, p.259 (1st edition).