Maxwell#

Layer Potentials#

\[\begin{split} \begin{array}{rcl} \mathrm{SL}\big(\boldsymbol j\big)(\boldsymbol x) &=& \kappa \, \displaystyle {\int\limits_\Gamma \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|\boldsymbol x-\boldsymbol y\|}}{\| \boldsymbol x-\boldsymbol y\|} \, \boldsymbol j(\boldsymbol y)\, \mathrm{d}\sigma_y + \frac{1}{\kappa} \nabla \int\limits_\Gamma \frac{1}{4\,\pi}\, \frac{e^{i\,\kappa\,\|\boldsymbol x-\boldsymbol y\|}}{\| \boldsymbol x-\boldsymbol y\|} \, \mathrm{div}_\Gamma \boldsymbol j(\boldsymbol y)\, \mathrm{d}\sigma_y } \\ \mathrm{DL}\big(\boldsymbol n \times \boldsymbol m\big)(\boldsymbol x) &=& \nabla \times \displaystyle {\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|\boldsymbol x-\boldsymbol y\|}}{\| \boldsymbol x-\boldsymbol y\|} } \, \boldsymbol n(\boldsymbol y) \times \boldsymbol{m}(\boldsymbol y)\, \mathrm{d}\sigma_y }\end{array} \end{split}\]

Maxwell Equations#

Let \(\Omega \in \mathbb R^3\) denote a perfect electric conductor and \(\gamma_R \boldsymbol E^i = -\boldsymbol m\) the given Dirichlet trace of an incoming time-harmonic electromagnetic signal \(\boldsymbol E^i\). The scattered electromagnetic field with components \(\boldsymbol E\) and \(\boldsymbol H\) solves the following equations in the exterior domain \(\Omega^c\):

\[\begin{split} \left\{ \begin{array}{ccl} \mathbf{curl} \, \boldsymbol H &=& -i\omega\varepsilon \boldsymbol E\,, \\ \mathbf{curl} \, \boldsymbol E &=& i\omega\mu \boldsymbol H\,, \\ \gamma_R\, \boldsymbol E &=& \boldsymbol m \end{array} \right. \end{split}\]

From here we can derive two second order equations: one for the electric field \(\boldsymbol E\) and one for the magnetic field \(\boldsymbol H\).

Maxwell Dirichlet BVP#

The electric field \(\boldsymbol E\) solves the second order equation with Dirichlet boundary conditions:

\[\begin{split}\begin{array}{rcl l} \mathbf{curl} \, \mathbf{curl}\, \boldsymbol E - \kappa^2 \, \boldsymbol E &=& \boldsymbol 0, \quad &\textnormal{in } \Omega^c \subset \mathbb R^3\,,\\ \gamma_R \,\boldsymbol E &=& \boldsymbol m, \quad & \textnormal{on }\Gamma\,, \\ \left\| \mathbf{curl} \, \boldsymbol E( x) - i\,\omega\,\epsilon \, \boldsymbol E( x)\right\| &=& \mathcal O\left( \displaystyle \frac{1}{\| x\|^2}\right), &\textnormal{for} \; \|x\| \to \infty\,.\end{array}\end{split}\]

1. Direct Ansatz

\[\begin{split} \begin{array}{r rcl } \textnormal{direct ansatz } & \boldsymbol E(x) &=& \mathrm{SL}\left( \gamma_N \, \boldsymbol E\right)(x) + \mathrm{DL}\left( \gamma_D \,\boldsymbol E\right)(x) \\ \textnormal{variational formulation } & \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{div}_\Gamma, \Gamma): \; \big\langle \gamma_R \, \mathrm{SL} (\boldsymbol j), \boldsymbol v \big\rangle_{-\frac12} &=& \big\langle \boldsymbol m, \boldsymbol v\big\rangle_{-\frac12} - \big\langle \gamma_R\,\mathrm{DL}(\boldsymbol n \times \boldsymbol{m}), \boldsymbol v\big\rangle_{-\frac12} \\ \textnormal{discretisation} & \mathrm{V} \, \mathbf{j} &=& \left( \dfrac12 \mathrm{M} - \mathrm{K}\right) \,\mathbf{m} \end{array}\end{split}\]

2. Indirect Ansatz

\[\begin{split} \begin{array}{r rcl } \textnormal{indirect ansatz} & \boldsymbol E(x) &=& \mathrm{SL}\left(\boldsymbol j^t\right)(x)\\ \textnormal{variational formulation } & \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{div}_\Gamma, \Gamma): \; \big\langle \gamma_R \, \mathrm{SL} (\boldsymbol j^t), \boldsymbol v \big\rangle_{-\frac12} &=& \big\langle \boldsymbol m, \boldsymbol v\big\rangle_{-\frac12} \\ \textnormal{discretisation} & \mathrm{V} \, \mathbf{j^t} &=& \mathrm{M} \,\mathbf{m} \end{array}\end{split}\]

Notes:

  • \(\boldsymbol j^t\) is the Neumann trace of the total electric field \(\boldsymbol E^t = \boldsymbol E + \boldsymbol E^i\).

Maxwell Neumann BVP#

The magnetic field \(\boldsymbol H\) solves the second order equation with Neumann boundary conditions:

\[\begin{split} \left\{ \begin{array}{rcl l} \mathbf{curl} \, \mathbf{curl}\, \boldsymbol H - \kappa^2 \, \boldsymbol H &=& \boldsymbol 0, \quad &\textnormal{in } \Omega^c \subset \mathbb R^3\,,\\ \gamma_N \,\boldsymbol H &=& -\dfrac{i\omega\varepsilon}{\kappa} \, \boldsymbol n\times \boldsymbol m, \quad & \textnormal{on }\Gamma\,, \\[1ex] \left\| \mathbf{curl} \, \boldsymbol H( x) + i\,\omega\,\mu \, \boldsymbol H( x)\right\| &=& \mathcal O\left( \displaystyle \frac{1}{\| x\|^2}\right), &\textnormal{for} \; \|x\| \to \infty\end{array} \right. \end{split}\]

1. Direct Ansatz

Representation formula:

\[\begin{split}\begin{array}{rcl} \boldsymbol H(x) &=& \mathrm{SL}\left( \gamma_N \, \boldsymbol H\right)(x) +\mathrm{DL}\left( \gamma_D\,\boldsymbol H\right)(x) \\[1ex] &=& -\dfrac{i\omega\varepsilon}{\kappa} \, \Big(\underbrace{ \kappa\, \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol n(y)\times \boldsymbol m(y)\, \mathrm{d}\sigma_y + \frac{1}{\kappa} \nabla \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi}\, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \mathrm{curl}_\Gamma \,\boldsymbol m(y)\, \mathrm{d}\sigma_y }_{\displaystyle{\mathrm{SL}(\boldsymbol n \times \boldsymbol m)} } \Big) \\ && + \dfrac{ \kappa }{ i\omega\mu} \underbrace{ \nabla \times \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol{j}(y) \, \mathrm{d}\sigma_y }_{\displaystyle{ \mathrm{DL} (\boldsymbol{j}) } }\end{array}\end{split}\]

Apply rotated Dirichlet trace:

\[\begin{split}\begin{array}{c rcl} & \gamma_D \,\boldsymbol H &=& -\dfrac{i\omega\varepsilon}{\kappa} \gamma_D \,\mathrm{SL}(\boldsymbol n\times \boldsymbol m) + \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j) \\[1ex] \Rightarrow & \dfrac{\kappa}{i\omega\mu}\boldsymbol j &=& -\dfrac{i\omega\varepsilon}{\kappa} \gamma_D \, \mathrm{SL}(\boldsymbol n\times \boldsymbol m) + \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j) \\ \Rightarrow & \boldsymbol j &=& \gamma_D \,\mathrm{SL}( \boldsymbol n\times \boldsymbol m) + \gamma_D\, \mathrm{DL}(\boldsymbol j) \end{array}\end{split}\]

Thus,

\[\begin{split} \begin{array}{r rcl } \textnormal{direct ansatz} & \boldsymbol H(x) &=& -\dfrac{i\omega\varepsilon}{\kappa} \mathrm{SL}(\boldsymbol n \times \boldsymbol m) + \dfrac{\kappa}{i\omega\mu} \mathrm{DL}(\boldsymbol j) \\ \textnormal{variational formulation } & \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{curl}_\Gamma, \Gamma): \; \big\langle \boldsymbol v, \boldsymbol j\big\rangle_{-\frac12} - \big\langle \boldsymbol v, \gamma_D \,\mathrm{DL} (\boldsymbol j) \big\rangle_{-\frac12} &=& \big\langle \boldsymbol v, \gamma_D\, \mathrm{SL}(\boldsymbol n \times \boldsymbol{m}) \big\rangle_{-\frac12} \\ \textnormal{discretisation} & \left( \dfrac12 \mathrm{M}^\intercal + \mathrm{K}^\intercal\right) \,\mathbf{j} &=& -\mathrm D \, \mathbf m \end{array}\end{split}\]

2. Indiret Ansatz

Representation formula:

\[\begin{split} \begin{array}{rcl} \boldsymbol H(x) &=& \mathrm{DL}\left( \gamma_R\,\boldsymbol H^t\right)(x) \\ &=& \dfrac{ \kappa }{ i\omega\mu} \underbrace{ \nabla \times \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol{j}^t(y) \, \mathrm{d}\sigma_y }_{\displaystyle{ \mathrm{DL} (\boldsymbol{j}^t) } } \end{array}\end{split}\]

Apply rotated Dirichlet trace and use \(\boldsymbol j = \boldsymbol j^t - \boldsymbol j^i\):

\[\begin{split}\begin{array}{ l c rcl} && \gamma_D \,\boldsymbol H &=& \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j^t) \\ &\Rightarrow & \dfrac{\kappa}{i\omega\mu}\boldsymbol j &=& \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j^t) \\ &\Rightarrow & \boldsymbol j^t &=& \gamma_D \,\mathrm{DL}(\boldsymbol j^t) + \boldsymbol j^i \end{array}\end{split}\]

Thus,

\[\begin{split} \begin{array}{r rcl } \textnormal{indirect ansatz } & \boldsymbol H(x) &=& \dfrac{\kappa}{i\omega\mu} \mathrm{DL}\left(\boldsymbol j^t\right) \\ \textnormal{variational formulation } & \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{curl}_\Gamma, \Gamma): \; \left\langle \boldsymbol v, \boldsymbol j^t\right\rangle_{-\frac12} - \left\langle \boldsymbol v, \gamma_D \,\mathrm{DL} (\boldsymbol j^t) \right\rangle_{-\frac12} &=& \left\langle \boldsymbol v, \boldsymbol{j}^i \right\rangle_{-\frac12}\\ \textnormal{discretisation} & \left( \dfrac12 \mathrm{M}^\intercal + \mathrm{K}^\intercal\right) \,\mathbf{j}^t &=& \mathrm M \, \mathbf j^i \end{array}\end{split}\]

Notes:

  • The indirect ansatz for Dirichlet problem is often called EFIE (electric field integral equation).

  • The indirect ansatz for Neumann problem is often called MFIE (magnetic field integral equation).

  • MFIE equation is only valid on closed boundaries whereas EFIE holds in a generalized form on open screens

  • Also the magnetic field leads to boundary integral equations for \(\boldsymbol j\) and \(\boldsymbol j^t\). The boundary integral equations are integral equations of second type.

  • For low frequencie problems it is necessary to introduce explicitly the electrostatic potential. This leads to an additional equation which is a weak form of the continuity equation relating traces on the boundary holds. Here the normal trace, i.e. the Neuman trace of the electrostatic potential pops up.

  • Scattering at arbitrary dielectrics and pec bodies leads to a system of equations which is coupled by corresponding interface conditions.

  • In case the wave number \(\kappa\) corresponds to an interior eigenvalue of \(\mathbf{curl}\mathbf{curl}\) the BIE is not uniquely solvable. Instead of EFIE one consideres the combined electric field integral equation (CFIE).

  • consider \(H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\) conforming finite elements for test and trial space. Here is the hypersingular operator entry \(lk\)

\[ \mathrm{D}_{lk} = \int\limits_\Gamma \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \langle \boldsymbol n(y)\times \boldsymbol v_l(y), \boldsymbol n(x) \times \boldsymbol \varphi_k(x)\rangle\, \mathrm{d}\sigma_y \, \mathrm{d}\sigma_x - \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi}\, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \mathrm{curl}_\Gamma \,\boldsymbol v_l(y)\, \mathrm{curl}_\Gamma\,\boldsymbol \varphi_k(x) \mathrm{d}\sigma_y \mathrm{d}\sigma_x \]
  • consider a trial function \(\boldsymbol \psi_k \in H^{-\frac12}(\mathrm{div}_\Gamma,\Gamma)\) and a test function \(\boldsymbol v_l \in H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\). Here is the adjoint double layer potential operator entry \(lk\)

\[ \mathrm{K}'_{lk} = \int\limits_\Gamma \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \big\langle \boldsymbol n(y)\times \boldsymbol v_l(y), \nabla_{x} \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \times \boldsymbol \psi_k(y) \big\rangle\, \mathrm{d}\sigma_y \, \mathrm{d}\sigma_x \]