Boundary Integral Equations for Maxwell#

Notations for relevant trace operators:#

\[\begin{split} \begin{array}{r rcl } \textnormal{Dirichlet trace} \quad & \gamma_R \boldsymbol u &=& \left( \boldsymbol n \times \boldsymbol u \right) \times \boldsymbol n \\[1ex] \textnormal{rotated Dirichlet trace} \quad & \gamma_D \boldsymbol u &=& \boldsymbol n \times \boldsymbol u \\ \textnormal{Neumann trace} \quad & \gamma_N \boldsymbol u &=& \dfrac{1}{\kappa} \boldsymbol n \times \mathbf{curl}\, \boldsymbol u\,,\quad \kappa = \omega\, \sqrt{\varepsilon\,\mu}\,. \end{array} \end{split}\]

Notations for relevant trace spaces:#

\[\begin{split} \begin{array}{r rcl l} \textnormal{Dirichlet trace} \quad & \gamma_R \boldsymbol u &\in& H^{-\frac12}\left( \mathrm{curl}_\Gamma,\Gamma\right) \quad &\textnormal{tangential edge projection weakly continuous}\\ \textnormal{rotated Dirichlet trace} \quad & \gamma_D \boldsymbol u &\in& H^{-\frac12}\left( \mathrm{div}_\Gamma, \Gamma\right) \quad & \textnormal{normal edge projection weakly condinuous} \\ \textnormal{Neumann trace} \quad & \gamma_N \boldsymbol u &\in& H^{-\frac12}\left( \mathrm{div}_\Gamma, \Gamma\right) \quad & \textnormal{normal edge projection weakly condinuous}\,. \end{array} \end{split}\]

Maxwell equations PEC#

Let \(\Omega \in \mathbb R^3\) denote a perfect electric conductor and \(\gamma_R \boldsymbol E^i = -\boldsymbol m\) the given Dirichlet trace of an incoming time-harmonic electromagnetic signal \(\boldsymbol E^i\). The scattered electromagnetic field with components \(\boldsymbol E\) and \(\boldsymbol H\) solves the following equations in the exterior domain \(\Omega^c\):

\[\begin{split} \left\{ \begin{array}{ccl} \mathbf{curl} \, \boldsymbol H &=& -i\omega\varepsilon \boldsymbol E\,, \\ \mathbf{curl} \, \boldsymbol E &=& i\omega\mu \boldsymbol H\,, \\ \gamma_R\, \boldsymbol E &=& \boldsymbol m \end{array} \right. \end{split}\]

From here we can derive two second order equations: one for the electric field \(\boldsymbol E\) and one for the magnetic field \(\boldsymbol H\).

Electric field boundary integral equations#

The electric field \(\boldsymbol E\) solves the second order equation with Dirichlet boundary:

\[\begin{split}\left\{ \begin{array}{rcl l} \mathbf{curl} \, \mathbf{curl}\, \boldsymbol E - \kappa^2 \, \boldsymbol E &=& \boldsymbol 0, \quad &\textnormal{in } \Omega^c \subset \mathbb R^3\,,\\ \gamma_R \,\boldsymbol E &=& \boldsymbol m, \quad & \textnormal{on }\Gamma \\ \left\| \mathbf{curl} \, \boldsymbol E( x) - i\,\omega\,\epsilon \, \boldsymbol E( x)\right\| &=& \mathcal O\left( \displaystyle \frac{1}{\| x\|^2}\right), &\textnormal{for} \; \|x\| \to \infty\,.\end{array} \right. \end{split}\]

From here we can choose an direct or an indirect ansatz. We look first at the direct and then on the indirect ansatz.

Direct ansatz#

Representation formula:

\[\begin{split} \begin{array}{rcl} \boldsymbol E(x) &=& \mathrm{SL}\left( \gamma_N \, \boldsymbol E\right)(x) + \mathrm{DL}\left( \gamma_D\,\boldsymbol E\right)(x) \\[1ex] &=&\underbrace{ \kappa\,\displaystyle \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol j(y)\, \mathrm{d}\sigma_y + \frac{1}{\kappa} \nabla \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi}\, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \mathrm{div}_\Gamma \boldsymbol j(y)\, \mathrm{d}\sigma_y }_{\displaystyle{ =\mathrm{SL}(\boldsymbol j) } } + \underbrace{ \nabla \times \displaystyle \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol n(y) \times \boldsymbol{m}(y)\, \mathrm{d}\sigma_y }_{\displaystyle{ =\mathrm{DL}(\boldsymbol n\times \boldsymbol m)} } \,. \end{array}\end{split}\]

Variational formulation and discretisation:

\[ \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{div}_\Gamma, \Gamma): \quad \left\langle \gamma_R \, \mathrm{SL} (\boldsymbol j), \boldsymbol v \right\rangle_{-\frac12} = \left\langle \boldsymbol m, \boldsymbol v\right\rangle_{-\frac12} - \left\langle \gamma_R\,\mathrm{DL}(\boldsymbol n \times \boldsymbol{m}), \boldsymbol v\right\rangle_{-\frac12} \quad \stackrel{\textnormal{MoM}}{\Longrightarrow} \quad \mathrm{V} \, \mathbf{j} = \left( \frac12 \mathrm{M} - \mathrm{K}\right) \,\mathbf{m} \,, \]

Indirect ansatz#

Representation formula:

\[\begin{split} \begin{array}{rcl} \boldsymbol E(x) &=& \mathrm{SL}\left( \gamma_N \, \boldsymbol E^t\right)(x) \\[1ex] &=&\underbrace{ \kappa\,\displaystyle \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol j^t(y)\, \mathrm{d}\sigma_y + \frac{1}{\kappa} \nabla \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi}\, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \mathrm{div}_\Gamma \boldsymbol j^t(y)\, \mathrm{d}\sigma_y }_{\displaystyle{ =\mathrm{SL}(\boldsymbol j^t) } } \,. \end{array}\end{split}\]

Variational formulation and discretisation:

\[ \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{div}_\Gamma, \Gamma): \quad \left\langle \gamma_R \, \mathrm{SL} (\boldsymbol j^t), \boldsymbol v \right\rangle_{-\frac12} = \left\langle \boldsymbol m, \boldsymbol v\right\rangle_{-\frac12} \quad \stackrel{\textnormal{MoM}}{\Longrightarrow} \quad \mathrm{V} \, \mathbf{j^t} = \mathrm{M} \,\mathbf{m} \,, \]

Notes#

  • The bie from an indirect ansatz is often called EFIE (electric field integral equation).

  • The solution \(\boldsymbol j^t\) of the EFIE is the Neumann trace of the total electric field \(\boldsymbol E^t = \boldsymbol E + \boldsymbol E^i\).

  • The density \(\boldsymbol j\) from the direct ansatz is not the same as the density \(\boldsymbol j^t\) from the indirect ansatz. It holds

\[\begin{split} \begin{array}{rcl cl l} \boldsymbol j &=& \gamma_N \, \boldsymbol E &=& \dfrac{1}{\kappa} \, \boldsymbol n \times \mathbf{curl}\,\boldsymbol E \quad &\textnormal{Neumann trace of scattered field} \\ \boldsymbol j^t &=& \gamma_N \, \boldsymbol E^t &=& \dfrac{1}{\kappa} \, \boldsymbol n \times \mathbf{curl}\,\boldsymbol E^t \quad & \textnormal{Neumann trace of total field}\,. \end{array} \end{split}\]
  • The densities are related as follows

\[ \boldsymbol j^t = \boldsymbol j + \boldsymbol j^i\]

Magnetic field boundary integral equations#

The magnetic field solves a second order equation with Neumann boundary conditions:

\[\begin{split} \left\{ \begin{array}{rcl l} \mathbf{curl} \, \mathbf{curl}\, \boldsymbol H - \kappa^2 \, \boldsymbol H &=& \boldsymbol 0, \quad &\textnormal{in } \Omega^c \subset \mathbb R^3\,,\\ \gamma_N \,\boldsymbol H &=& -\dfrac{i\omega\varepsilon}{\kappa} \, \boldsymbol n\times \boldsymbol m, \quad & \textnormal{on }\Gamma \\[1ex] \left\| \mathbf{curl} \, \boldsymbol H( x) + i\,\omega\,\mu \, \boldsymbol H( x)\right\| &=& \mathcal O\left( \displaystyle \frac{1}{\| x\|^2}\right), &\textnormal{for} \; \|x\| \to \infty\,.\end{array} \right. \end{split}\]

Again, we can choose an direct or an indirect ansatz. We look first at the direct and then on the indirect ansatz.

Direct ansatz#

Representation formula:

\[\begin{split}\begin{array}{rcl} \boldsymbol H(x) &=& \mathrm{SL}\left( \gamma_N \, \boldsymbol H\right)(x) +\mathrm{DL}\left( \gamma_R\,\boldsymbol H\right)(x) \\[1ex] &=& -\dfrac{i\omega\varepsilon}{\kappa} \, \Big(\underbrace{ \kappa\, \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol n(y)\times \boldsymbol m(y)\, \mathrm{d}\sigma_y + \frac{1}{\kappa} \nabla \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi}\, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \mathrm{curl}_\Gamma \,\boldsymbol m(y)\, \mathrm{d}\sigma_y }_{\displaystyle{\mathrm{SL}(\boldsymbol n \times \boldsymbol m)} } \Big) + \dfrac{ \kappa }{ i\omega\mu} & \underbrace{ \nabla \times \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol{j}(y) \, \mathrm{d}\sigma_y }_{\displaystyle{ \mathrm{DL} (\boldsymbol{j}) } }\,.\end{array}\end{split}\]

Apply rotated Dirichlet trace:

\[\begin{split}\begin{array}{c rcl} & \gamma_D \,\boldsymbol H &=& -\dfrac{i\omega\varepsilon}{\kappa} \gamma_D \,\mathrm{SL}(\boldsymbol n\times \boldsymbol m) + \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j) \\[1ex] \Rightarrow & \dfrac{\kappa}{i\omega\mu}\boldsymbol j &=& -\dfrac{i\omega\varepsilon}{\kappa} \gamma_D \, \mathrm{SL}(\boldsymbol n\times \boldsymbol m) + \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j) \quad \Rightarrow \quad \boldsymbol j = \gamma_D \,\mathrm{SL}( \boldsymbol n\times \boldsymbol m) + \gamma_D\, \mathrm{DL}(\boldsymbol j) \end{array}\end{split}\]

Variational formulation and discretisation:

\[ \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{curl}_\Gamma, \Gamma): \quad \left\langle \boldsymbol v, \boldsymbol j\right\rangle_{-\frac12} - \left\langle \boldsymbol v, \gamma_D \,\mathrm{DL} (\boldsymbol j) \right\rangle_{-\frac12} = \left\langle \boldsymbol v, \gamma_D\, \mathrm{SL}(\boldsymbol n \times \boldsymbol{m}) \right\rangle_{-\frac12} \quad \stackrel{\textnormal{MoM}}{\Longrightarrow} \quad \left( \frac12 \mathrm{M}^\intercal + \mathrm{K}^\intercal\right) \,\mathbf{j} = -\mathrm D \, \mathbf m \,, \]

Indirect ansatz#

Representation formula:

\[ \boldsymbol H(x) = \mathrm{DL}\left( \gamma_R\,\boldsymbol H^t\right)(x) = \dfrac{ \kappa }{ i\omega\mu} \underbrace{ \nabla \times \displaystyle\int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \boldsymbol{j}^t(y) \, \mathrm{d}\sigma_y }_{\displaystyle{ \mathrm{DL} (\boldsymbol{j}^t) } }\,.\]

Apply rotated Dirichlet trace and use \(\boldsymbol j = \boldsymbol j^t - \boldsymbol j^i\):

\[\begin{split}\begin{array}{ l c rcl} \gamma_D \,\boldsymbol H = \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j^t) \quad &\Rightarrow & \dfrac{\kappa}{i\omega\mu}\boldsymbol j &=& \dfrac{\kappa}{i\omega\mu} \gamma_D \,\mathrm{DL}( \boldsymbol j^t) \\[2ex] &\Rightarrow &\boldsymbol j^t &=& \gamma_D \,\mathrm{DL}(\boldsymbol j^t) + \boldsymbol j^i \end{array}\end{split}\]

Variational formulation and discretisation:

\[ \forall \, \boldsymbol v\in H^{-\frac12}(\mathrm{curl}_\Gamma, \Gamma): \quad \left\langle \boldsymbol v, \boldsymbol j^t\right\rangle_{-\frac12} - \left\langle \boldsymbol v, \gamma_D \,\mathrm{DL} (\boldsymbol j^t) \right\rangle_{-\frac12} = \left\langle \boldsymbol v, \boldsymbol{j}^i \right\rangle_{-\frac12} \quad \stackrel{\textnormal{MoM}}{\Longrightarrow} \quad \left( \frac12 \mathrm{M}^\intercal + \mathrm{K}^\intercal\right) \,\mathbf{j} = \mathrm M \, \mathbf j^i \,, \]

Notes#

  • The BIE from an indirect ansatz is often called MFIE (magnetic field integral equation).

  • Also the magnetic field leads to boundary integral equations \(\boldsymbol j\) and \(\boldsymbol j^t\). The boundary integral equation is are integral equations of second type.

  • consider \(H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\) conforming finite elements for test and trial space. Here is the hypersingular operator entry \(lk\)

\[ \mathrm{D}_{lk} = \int\limits_\Gamma \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \langle \boldsymbol n(y)\times \boldsymbol v_l(y), \boldsymbol n(x) \times \boldsymbol \varphi_k(x)\rangle\, \mathrm{d}\sigma_y \, \mathrm{d}\sigma_x - \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi}\, \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \, \mathrm{curl}_\Gamma \,\boldsymbol v_l(y)\, \mathrm{curl}_\Gamma\,\boldsymbol \varphi_k(x) \mathrm{d}\sigma_y \mathrm{d}\sigma_x \]
  • consider a trial function \(\boldsymbol \psi_k \in H^{-\frac12}(\mathrm{div}_\Gamma,\Gamma)\) and a test function \(\boldsymbol v_l \in H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\). Here is the adjoint double layer potential operator entry \(lk\)

\[ \mathrm{K}'_{lk} = \int\limits_\Gamma \int\limits_\Gamma \displaystyle{ \frac{1}{4\,\pi} \, \big\langle \boldsymbol n(y)\times \boldsymbol v_l(y), \nabla_{x} \frac{e^{i\,\kappa\,\|x-y\|}}{\| x-y\|} } \times \boldsymbol \psi_k(y) \big\rangle\, \mathrm{d}\sigma_y \, \mathrm{d}\sigma_x \]

Conclusion#

Operator Name

Symbol

trial space

test space

rotation

single layer operator

\(\mathrm V \)

\(H^{-\frac12}(\mathrm{div}_\Gamma,\Gamma)\)

\(H^{-\frac12}(\mathrm{div}_\Gamma,\Gamma)\)

-

double layer operator

\(\mathrm K \)

\(H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\)

\(H^{-\frac12}(\mathrm{div}_\Gamma,\Gamma)\)

trial space

hypersingular operator

\(\mathrm D\)

\(H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\)

\(H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\)

-

adjoint double layer operator

\(\mathrm K' \)

\(H^{-\frac12}(\mathrm{div}_\Gamma,\Gamma)\)

\(H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\)

test space

mass matrix

\(\mathrm M \)

\(H^{-\frac12}(\mathrm{div}_\Gamma,\Gamma)\)

\(H^{-\frac12}(\mathrm{curl}_\Gamma,\Gamma)\)

-

NG-BEM Python Functions#

Operator

Python Function

\(\mathrm V \)

MaxwellSingleLayerPotentialOperator

\(\mathrm K \)

MaxwellDoubleLayerPotentialOperator

\(\mathrm D \)

MaxwellSingleLayerPotentialOperatorCurl